
去水印代碼實(shí)現(xiàn)

去水印的實(shí)現(xiàn)方法取決于水印的類(lèi)型和復(fù)雜度,以下是幾種常見(jiàn)場(chǎng)景的代碼實(shí)現(xiàn)示例:1. 基礎(chǔ)半透明水印去除(Python + Pillow)```pythonfrom PIL...
去水印的實(shí)現(xiàn)方法取決于水印的類(lèi)型和復(fù)雜度,以下是幾種常見(jiàn)場(chǎng)景的代碼實(shí)現(xiàn)示例:
1. 基礎(chǔ)半透明水印去除(Python + Pillow)
```python
from PIL import Image, ImageDraw, ImageEnhance
def remove_transparent_watermark(input_path, output_path):
讀取圖片
img = Image.open(input_path)
draw = ImageDraw.Draw(img)
獲取水印區(qū)域(假設(shè)水印在右下角,寬高為10%)width, height = img.size
watermark_size = (int(width0.1), int(height0.1))
watermark_pos = (width watermark_size[0], height watermark_size[1])
獲取水印透明度(假設(shè)為0.3)
alpha = 0.3
修復(fù)像素
for x in range(watermark_size[0]):
for y in range(watermark_size[1]):
img像素 = img.getpixel((watermark_pos[0]+x, watermark_pos[1]+y))
if img像素[3] > 0: 非透明通道
img.putpixel((watermark_pos[0]+x, watermark_pos[1]+y),
tuple([alpha val for val in img像素[:3]] + [img像素[3]]))
img.save(output_path, quality=95)
使用示例
remove_transparent_watermark("watermarked.jpg", "cleaned.jpg")
```
2. 基于深度學(xué)習(xí)的隱形水印去除(PyTorch)
```python
import torch
import torchvision.transforms as transforms
加載預(yù)訓(xùn)練模型(需提前訓(xùn)練或下載)
model = torch.hub.load('sczhou/watermark-removal', 'watermark_removal', pretrained=True)
model.eval()
def remove_watermark(input_path):
預(yù)處理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
with torch.no_grad():img = transform(Image.open(input_path).convert('RGB')).unsqueeze(0)
output = model(img)
保存修復(fù)結(jié)果
output_img = transforms.ToPILImage()(output[0].cpu())
output_img.save("cleaned.png")
使用示例
remove_watermark("hidden_watermark.jpg")
```
3. 模板匹配法(已知水印位置)
```python
import cv2
import numpy as np
def remove_known_watermark(input_path, watermark_path, output_path):
讀取圖像
img = cv2.imread(input_path)
watermark = cv2.imread(watermark_path, 0) 讀取灰度圖
計(jì)算相似度result = cv2.matchTemplate(img, watermark, cv2.TM_CCOEFF_NORM)
找到最佳匹配位置
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
截取區(qū)域并修復(fù)
x, y = max_loc
region = img[y:y+watermark.shape[0], x:x+watermark.shape[1]]
假設(shè)水印為黑色,直接覆蓋(根據(jù)實(shí)際情況調(diào)整)
cv2.rectangle(region, (0,0), (watermark.shape[1]-1, watermark.shape[0]-1), (0,0,0), -1)
保存結(jié)果
cv2.imwrite(output_path, img)
使用示例
remove_known_watermark("watermarked.jpg", "watermark.png", "cleaned.jpg")
```
4. 多層水印檢測(cè)(OpenCV)
```python
import cv2
import numpy as np
def detect_and_remove(input_path):
img = cv2.imread(input_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
檢測(cè)高頻噪聲(假設(shè)水印為高頻)canny = cv2.Canny(gray, 50, 150)
kernel = np.ones((3,3), np.uint8)
dilate = cv2.dilate(canny, kernel, iterations=1)
檢測(cè)邊緣
edges = cv2.Canny(dilate, 50, 150)
修復(fù)區(qū)域(示例:去除中心區(qū)域)
mask = np.zeros_like(edges)
cv2.circle(mask, (img.shape[1]//2, img.shape[0]//2), 100, 255, -1)
img = cv2.bitwise_and(img, img, mask=mask)
cv2.imwrite("cleaned.jpg", img)
使用示例
detect_and_remove("watermarked.jpg")
```
關(guān)鍵技術(shù)說(shuō)明:
- 水印類(lèi)型判斷:
- 半透明水印:通過(guò)Alpha通道處理
- 隱形水印:基于頻域/顏色空間處理
物理水印:模板匹配/邊緣檢測(cè)
性能優(yōu)化:
- 使用OpenCV加速(C++級(jí)性能)
- 模型量化(TensorRT部署)
GPU加速(PyTorch)
進(jìn)階方案:
- 基于GAN的修復(fù)(如ESRGAN)
- 多水印協(xié)同去除
動(dòng)態(tài)水印檢測(cè)(視頻場(chǎng)景)
注意事項(xiàng):
- 版權(quán)合規(guī)性檢查
- 質(zhì)量損失控制(PSNR/SSIM指標(biāo))
- 邊緣銳化處理(Laplacian濾波)
建議根據(jù)實(shí)際水印類(lèi)型選擇合適方案,復(fù)雜水印處理建議使用預(yù)訓(xùn)練模型(如Wav2Vec2-based方案)。對(duì)于商業(yè)用途,建議咨詢(xún)法律顧問(wèn)確保合規(guī)性。
本文鏈接:http://www.wzyaohuidianqi.cn/gong/431451.html
