
python去水印代碼

以下是幾種Python去除水印的常見方法及示例代碼,根據(jù)水印類型和復(fù)雜度進(jìn)行分類:一、基礎(chǔ)方法(適用于簡單固定水印)1. 直接蒙版覆蓋(需已知蒙版圖像)```pytho...
以下是幾種Python去除水印的常見方法及示例代碼,根據(jù)水印類型和復(fù)雜度進(jìn)行分類:
一、基礎(chǔ)方法(適用于簡單固定水印)
1. 直接蒙版覆蓋(需已知蒙版圖像)
```python
import cv2
import numpy as np
def remove_watermark簡單蒙版(input_path, output_path, mask_path):
讀取原圖
img = cv2.imread(input_path)
讀取蒙版(黑色區(qū)域?yàn)橥该鳎?/p>
mask = cv2.imread(mask_path, 0) 通道數(shù)應(yīng)為1
蒙版二值化處理
mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)[1]
應(yīng)用蒙版
result = cv2.bitwise_and(img, img, mask=mask)
保存結(jié)果
cv2.imwrite(output_path, result)
使用示例
remove_watermark簡單蒙版("input.jpg", "output.jpg", "mask.png")
```
2. 均值替換法(適用于半透明水印)
```python
import cv2
def remove_watermark均值替換(input_path, output_path, confidence_threshold=0.8):
img = cv2.imread(input_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
檢測高對比度區(qū)域(假設(shè)水印具有明顯顏色差異)kernel = np.ones((3,3), np.uint8)
dilated = cv2.dilate(gray, kernel, iterations=1)
diff = cv2.absdiff(gray, dilated)
二值化檢測區(qū)域
_, mask = cv2.threshold(diff, 50, 255, cv2.THRESH_BINARY)
應(yīng)用均值替換
mean_val = np.mean(img[mask==255], axis=(0,1))
result = cv2.bitwise_and(img, img, mask=mask)
cv2.add(result, cv2ScalarAll(mean_val), result)
cv2.imwrite(output_path, result)
```
二、進(jìn)階方法(適用于復(fù)雜水印)
1. 基于OpenCV的邊緣檢測法
```python
import cv2
import numpy as np
def remove_watermark邊緣檢測(input_path, output_path):
img = cv2.imread(input_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
使用Canny邊緣檢測edges = cv2.Canny(gray, 50, 150)
創(chuàng)建二值掩膜(假設(shè)水印邊緣清晰)
_, mask = cv2.threshold(edges, 150, 255, cv2.THRESH_BINARY)
應(yīng)用掩膜
result = cv2.bitwise_and(img, img, mask=mask)
cv2.imwrite(output_path, result)
```
2. 深度學(xué)習(xí)模型(推薦使用預(yù)訓(xùn)練模型)
```python
需安裝依賴:pip install tensorflow opencv-python
import tensorflow as tf
import numpy as np
import cv2
使用預(yù)訓(xùn)練的模型(示例:假設(shè)已下載到當(dāng)前目錄)
model = tf.keras.models.load_model('watermark_remover.h5')
def remove_watermark深度學(xué)習(xí)(input_path, output_path):
img = cv2.imread(input_path)
img = cv2.resize(img, (256, 256)) 根據(jù)模型輸入調(diào)整
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_array = np.expand_dims(img, axis=0)
模型預(yù)測(需修改實(shí)際模型邏輯)prediction = model.predict(img_array)
將預(yù)測結(jié)果應(yīng)用到原圖(示例邏輯)
alpha = prediction[0][0]
result = cv2.bitwise_and(img, img, mask=np.uint8(alpha255))
cv2.imwrite(output_path, result)
```
三、第三方庫方案
1. 使用removing
庫(需科學(xué)上網(wǎng))
```python
pip install removing
from removing import Remove
def remove_watermark第三方(input_path, output_path):
remove = Remove()
remove.load_model() 加載預(yù)訓(xùn)練模型
result = remove.remove(input_path)
result.save(output_path)
```
2. 使用remove.bg
API(商業(yè)用途)
```python
需注冊獲取API Key
import requests
API_KEY = "your_api_key"
input_url = "https://api.remove.bg/v1.0/removebg"
files = {'image_file': open("input.jpg", 'rb')
本文鏈接:http://www.wzyaohuidianqi.cn/gong/419417.html
下一篇:快影app怎樣去水印圖片
